A BRIEF DESCRIPTION OF MAGICC/SCENGEN

MAGICC/SCENGEN is a coupled gas-cycle/climate model (MAGICC) that drives a spatial climate-change scenario generator (SCENGEN). MAGICC is a Simple Climate Model that computes the mean global surface air temperature and sea-level rise for particular emissions scenarios for greenhouse gases and sulphur dioxide (Raoer et al., 1996). MAGICC has been the primary model used by IPCC to produce projections of future global-mean temperature and sea level rise (see Houghton et al., 2001).


SCENGEN is a database that contains the results of a large number of GCM experiments. SCENGEN constructs a range of geographically-explicit climate change scenarios for the world by exploiting the results from MAGICC and a set of GCM experiments, and combining these with observed global and regional climate data sets. 

SCENGEN uses the scaling method of Santer et al. (1990) to produce spatial pattern of change from an extensive data base of atmosphere ocean GCM – AOGCM (atmosphere ocean general circulation models) data. Spatial patterns are “normalized” and expressed as changes per 1°C change in global-mean temperature. The greenhouse-gas and aerosol components are appropriately weighted, added, and scaled up to the actual global-mean temperature.

The user can select from a number of different AOGCMs for the greenhouse-gas component. For the aerosol component there is currently only a single set of model results. This approach assumes that regional patterns of climate change will be consistent at varying levels of atmospheric greenhouse gas concentrations.

The MAGICC component employs IPCC Third Assessment Report (TAR) science (Houghton et al., 2001). The SCENGEN component allows users to investigate only changes in the mean climate state in response to external forcing. It relies mainly on climate models run in the latter half of the 1990s.